Class AutoMaskingArgs
Nama dari : Aspose.Imaging.Masking.Options Pengumpulan: Aspose.Imaging.dll (25.4.0)
Menampilkan argumen yang ditentukan untuk metode masker otomatis
public class AutoMaskingArgs : IMaskingArgs
Inheritance
Implements
anggota yang diwarisi
object.GetType() , object.MemberwiseClone() , object.ToString() , object.Equals(object?) , object.Equals(object?, object?) , object.ReferenceEquals(object?, object?) , object.GetHashCode()
Examples
Contoh ini menunjukkan bagaimana untuk memecah gambar raster ke dalam beberapa gambar menggunakan image masking dan algoritma segmen K-means. image masking adalah teknik pemrosesan gambar yang digunakan untuk memecah latar belakang dari objek gambar depan.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
Menggunakan masker segmen untuk mempercepat proses segmen
// Masking export options
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// The backgroung color will be transparent.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Transparent;
maskingOptions.ExportOptions = exportOptions;
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "BigImage.jpg"))
{
Aspose.Imaging.Size imageSize = image.Size;
// Reducing image size to speed up the segmentation process
image.ResizeHeightProportionally(600, Aspose.Imaging.ResizeType.HighQualityResample);
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Getting the foreground mask
using (Aspose.Imaging.RasterImage foregroundMask = maskingResult[1].GetMask())
{
// Increase the size of the mask to the size of the original image
foregroundMask.Resize(imageSize.Width, imageSize.Height, Aspose.Imaging.ResizeType.NearestNeighbourResample);
// Applying the mask to the original image to obtain a foreground segment
using (Aspose.Imaging.RasterImage originImage = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "BigImage.jpg"))
{
Aspose.Imaging.Masking.ImageMasking.ApplyMask(originImage, foregroundMask, maskingOptions);
originImage.Save(dir + "BigImage_foreground.png", exportOptions);
}
}
}
}
Contoh ini menunjukkan bagaimana untuk menentukan saran untuk algoritma pengelasan gambar untuk meningkatkan ketepatan metode segmen (kluster). pengelasan gambar adalah teknik pemrosesan gambar yang digunakan untuk memisahkan latar belakang dari objek gambar depan.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
Menyimpan sesi penyimpanan ke file untuk sesi yang panjang, serta untuk kemungkinan untuk mengulangi sesi di lingkungan lain.
string dir = "c:\\temp\\";
string sessionBackupFile = dir + "session.bak";
// Masking export options
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Starting a session for the first time and saving to a file
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
using (Aspose.Imaging.Masking.IMaskingSession session = masking.CreateSession(maskingOptions))
{
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = session.Decompose())
{
using (Aspose.Imaging.RasterImage segmentImage = maskingResult[1].GetImage())
{
segmentImage.Save(dir + "step1.png");
}
}
session.Save(sessionBackupFile);
}
}
// Resuming a masking session from a file
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
using (Aspose.Imaging.Masking.IMaskingSession session = masking.LoadSession(sessionBackupFile))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[]
{
new Point(0, 0), new Point(0, 1), new Point(1, 0),
new Point(1, 1), new Point(2, 0), new Point(2, 1),
new Point(3, 0), new Point(3, 1)
},
};
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = session.ImproveDecomposition(args))
{
// Explicit transfer of export options, since it is not serializable
maskingResult.MaskingOptions.ExportOptions = exportOptions;
using (Aspose.Imaging.RasterImage segmentImage = maskingResult[1].GetImage())
{
segmentImage.Save(dir + "step2.png");
}
}
}
}
Constructors
AutoMaskingArgs()
public AutoMaskingArgs()
Properties
MaxIterationNumber
Dapatkan atau menetapkan jumlah iterasi maksimum.
public int MaxIterationNumber { get; set; }
Nilai Properti
Examples
Contoh ini menunjukkan bagaimana untuk memecah gambar raster ke dalam beberapa gambar menggunakan image masking dan algoritma segmen K-means. image masking adalah teknik pemrosesan gambar yang digunakan untuk memecah latar belakang dari objek gambar depan.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
NumberOfObjects
Dapatkan atau menetapkan jumlah objekUntuk memisahkan gambar awal ke (optional), nilai default adalah 2 (objek dan latar belakang).
public int NumberOfObjects { get; set; }
Nilai Properti
Examples
Contoh ini menunjukkan bagaimana untuk memecah gambar raster ke dalam beberapa gambar menggunakan image masking dan algoritma segmen K-means. image masking adalah teknik pemrosesan gambar yang digunakan untuk memecah latar belakang dari objek gambar depan.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
ObjectsPoints
Dapatkan atau menetapkan titik yang tergolong pada objek yang terpisah (optional)NumberOfObjects koordinasi yang tergolong dalam NumberOfObjects objek dari gambar awal.Parameter ini digunakan untuk meningkatkan ketepatan metode segmen.
public Point[][] ObjectsPoints { get; set; }
Nilai Properti
Point [ ]
Examples
Contoh ini menunjukkan bagaimana untuk menentukan saran untuk algoritma pengelasan gambar untuk meningkatkan ketepatan metode segmen (kluster). pengelasan gambar adalah teknik pemrosesan gambar yang digunakan untuk memisahkan latar belakang dari objek gambar depan.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
ObjectsRectangles
Dapatkan atau menetapkan rektangle objek yang tergolong pada objek terpisah (optional).Parameter ini digunakan untuk meningkatkan ketepatan metode segmen.
public Rectangle[] ObjectsRectangles { get; set; }
Nilai Properti
Rectangle [ ]
Examples
Contoh ini menunjukkan bagaimana untuk menentukan saran untuk algoritma pengelasan gambar untuk meningkatkan ketepatan metode segmen (kluster). pengelasan gambar adalah teknik pemrosesan gambar yang digunakan untuk memisahkan latar belakang dari objek gambar depan.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
OrphanedPoints
Dapatkan atau menetapkan titik-titik yang tidak lagi milik objek apa pun (optional).Parameter ini hanya digunakan dalam kasus re-segmentasi.
public Point[] OrphanedPoints { get; set; }
Nilai Properti
Point [ ]
Precision
Dapatkan atau menetapkan ketepatan metode segmen (optional).
public double Precision { get; set; }
Nilai Properti
Examples
Contoh ini menunjukkan bagaimana untuk memecah gambar raster ke dalam beberapa gambar menggunakan image masking dan algoritma segmen K-means. image masking adalah teknik pemrosesan gambar yang digunakan untuk memecah latar belakang dari objek gambar depan.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}