Class AutoMaskingArgs
이름 공간 : Aspose.Imaging.Masking.Options 모임: Aspose.Imaging.dll (25.4.0)
자동 마스크 방법에 대해 지정된 논쟁을 나타냅니다.
public class AutoMaskingArgs : IMaskingArgs
Inheritance
Implements
상속 회원들
object.GetType() , object.MemberwiseClone() , object.ToString() , object.Equals(object?) , object.Equals(object?, object?) , object.ReferenceEquals(object?, object?) , object.GetHashCode()
Examples
이 예제는 이미지 마스크와 K-means 분할 알고리즘을 사용하여 여러 이미지로 레이저 이미지를 분해하는 방법을 보여줍니다.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
세그먼트 마스크를 사용하여 세그먼트 과정을 가속화합니다.
// Masking export options
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// The backgroung color will be transparent.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Transparent;
maskingOptions.ExportOptions = exportOptions;
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "BigImage.jpg"))
{
Aspose.Imaging.Size imageSize = image.Size;
// Reducing image size to speed up the segmentation process
image.ResizeHeightProportionally(600, Aspose.Imaging.ResizeType.HighQualityResample);
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Getting the foreground mask
using (Aspose.Imaging.RasterImage foregroundMask = maskingResult[1].GetMask())
{
// Increase the size of the mask to the size of the original image
foregroundMask.Resize(imageSize.Width, imageSize.Height, Aspose.Imaging.ResizeType.NearestNeighbourResample);
// Applying the mask to the original image to obtain a foreground segment
using (Aspose.Imaging.RasterImage originImage = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "BigImage.jpg"))
{
Aspose.Imaging.Masking.ImageMasking.ApplyMask(originImage, foregroundMask, maskingOptions);
originImage.Save(dir + "BigImage_foreground.png", exportOptions);
}
}
}
}
이 예제는 이미지 마스크 알고리즘에 대한 제안을 지정하는 방법을 보여줍니다 분할 (클러스터) 방법의 정확도를 향상시키기 위해. 이미지 마스크는 앞면 이미지 개체에서 배경을 분리하는 데 사용되는 이미지 처리 기술입니다.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
긴 세션을 위해 파일에 마스크 세션을 저장하고 다른 환경에서 세션을 재개 할 수있는 가능성을 위해.
string dir = "c:\\temp\\";
string sessionBackupFile = dir + "session.bak";
// Masking export options
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Starting a session for the first time and saving to a file
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
using (Aspose.Imaging.Masking.IMaskingSession session = masking.CreateSession(maskingOptions))
{
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = session.Decompose())
{
using (Aspose.Imaging.RasterImage segmentImage = maskingResult[1].GetImage())
{
segmentImage.Save(dir + "step1.png");
}
}
session.Save(sessionBackupFile);
}
}
// Resuming a masking session from a file
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
using (Aspose.Imaging.Masking.IMaskingSession session = masking.LoadSession(sessionBackupFile))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[]
{
new Point(0, 0), new Point(0, 1), new Point(1, 0),
new Point(1, 1), new Point(2, 0), new Point(2, 1),
new Point(3, 0), new Point(3, 1)
},
};
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = session.ImproveDecomposition(args))
{
// Explicit transfer of export options, since it is not serializable
maskingResult.MaskingOptions.ExportOptions = exportOptions;
using (Aspose.Imaging.RasterImage segmentImage = maskingResult[1].GetImage())
{
segmentImage.Save(dir + "step2.png");
}
}
}
}
Constructors
AutoMaskingArgs()
public AutoMaskingArgs()
Properties
MaxIterationNumber
최대 수의 이테라션을 얻거나 설정합니다.
public int MaxIterationNumber { get; set; }
부동산 가치
Examples
이 예제는 이미지 마스크와 K-means 분할 알고리즘을 사용하여 여러 이미지로 레이저 이미지를 분해하는 방법을 보여줍니다.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
NumberOfObjects
개체 수를 얻거나 설정합니다.초기 이미지를 (선택)로 분리하려면 기본 값은 2 (구체 및 배경)입니다.
public int NumberOfObjects { get; set; }
부동산 가치
Examples
이 예제는 이미지 마스크와 K-means 분할 알고리즘을 사용하여 여러 이미지로 레이저 이미지를 분해하는 방법을 보여줍니다.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
ObjectsPoints
개별 개체에 속하는 포인트를 얻거나 설정합니다 (선택)NumberOfObjects는 NumberOfObjects에 속하는 원래 이미지의 개체를 조정합니다.이 매개 변수는 분할 방법의 정확도를 증가시키기 위해 사용됩니다.
public Point[][] ObjectsPoints { get; set; }
부동산 가치
Point [ ] [ ] [ ]
Examples
이 예제는 이미지 마스크 알고리즘에 대한 제안을 지정하는 방법을 보여줍니다 분할 (클러스터) 방법의 정확도를 향상시키기 위해. 이미지 마스크는 앞면 이미지 개체에서 배경을 분리하는 데 사용되는 이미지 처리 기술입니다.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
ObjectsRectangles
개체는 개별 개체에 속하는 직경을 얻거나 설정합니다 (선택).이 매개 변수는 분할 방법의 정확도를 증가시키기 위해 사용됩니다.
public Rectangle[] ObjectsRectangles { get; set; }
부동산 가치
Rectangle [ ] [ [ ]
Examples
이 예제는 이미지 마스크 알고리즘에 대한 제안을 지정하는 방법을 보여줍니다 분할 (클러스터) 방법의 정확도를 향상시키기 위해. 이미지 마스크는 앞면 이미지 개체에서 배경을 분리하는 데 사용되는 이미지 처리 기술입니다.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
OrphanedPoints
더 이상 어떤 개체에 속하지 않는 포인트를 얻거나 설정합니다 (선택).이 매개 변수는 재 분할의 경우에만 사용됩니다.
public Point[] OrphanedPoints { get; set; }
부동산 가치
Point [ ] [ [ ]
Precision
얻거나 분할 방법의 정확성을 설정합니다 (선택).
public double Precision { get; set; }
부동산 가치
Examples
이 예제는 이미지 마스크와 K-means 분할 알고리즘을 사용하여 여러 이미지로 레이저 이미지를 분해하는 방법을 보여줍니다.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}