Class AutoMaskingArgs
İsim alanı : Aspose.Imaging.Masking.Options Toplantı: Aspose.Imaging.dll (25.4.0)
Otomatik maske yöntemleri için belirtilen argümanları temsil eder
public class AutoMaskingArgs : IMaskingArgs
Inheritance
Implements
mirasçı üyeleri
object.GetType() , object.MemberwiseClone() , object.ToString() , object.Equals(object?) , object.Equals(object?, object?) , object.ReferenceEquals(object?, object?) , object.GetHashCode()
Examples
Bu örnek, resim maskeleri ve K-means segmentasyon algoritması kullanılarak bir raster görüntüsünü birden fazla görüntüye nasıl ayırt edeceğinizi gösterir. resim maskeleri, arka planı ön görüntü nesnelerinden ayırmak için kullanılan bir görüntü işleme tekniğidir.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
Segmentasyon sürecini hızlandırmak için bir segment maskesi kullanın
// Masking export options
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// The backgroung color will be transparent.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Transparent;
maskingOptions.ExportOptions = exportOptions;
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "BigImage.jpg"))
{
Aspose.Imaging.Size imageSize = image.Size;
// Reducing image size to speed up the segmentation process
image.ResizeHeightProportionally(600, Aspose.Imaging.ResizeType.HighQualityResample);
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Getting the foreground mask
using (Aspose.Imaging.RasterImage foregroundMask = maskingResult[1].GetMask())
{
// Increase the size of the mask to the size of the original image
foregroundMask.Resize(imageSize.Width, imageSize.Height, Aspose.Imaging.ResizeType.NearestNeighbourResample);
// Applying the mask to the original image to obtain a foreground segment
using (Aspose.Imaging.RasterImage originImage = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "BigImage.jpg"))
{
Aspose.Imaging.Masking.ImageMasking.ApplyMask(originImage, foregroundMask, maskingOptions);
originImage.Save(dir + "BigImage_foreground.png", exportOptions);
}
}
}
}
Bu örnek, segmentasyon (klustrasyon) yönteminin doğruluğunu iyileştirmek için görüntü gizleme algoritması için önerileri nasıl belirleyeceğinizi gösterir. görüntü gizleme, arka planı ön görüntü nesnelerinden ayırmak için kullanılan bir görüntü işleme tekniğidir.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
Maske oturumunu uzun oturumlar için bir dosyaya kaydetmek, aynı zamanda oturumu başka bir ortamda yeniden başlatma olasılığı için.
string dir = "c:\\temp\\";
string sessionBackupFile = dir + "session.bak";
// Masking export options
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Starting a session for the first time and saving to a file
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
using (Aspose.Imaging.Masking.IMaskingSession session = masking.CreateSession(maskingOptions))
{
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = session.Decompose())
{
using (Aspose.Imaging.RasterImage segmentImage = maskingResult[1].GetImage())
{
segmentImage.Save(dir + "step1.png");
}
}
session.Save(sessionBackupFile);
}
}
// Resuming a masking session from a file
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
using (Aspose.Imaging.Masking.IMaskingSession session = masking.LoadSession(sessionBackupFile))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[]
{
new Point(0, 0), new Point(0, 1), new Point(1, 0),
new Point(1, 1), new Point(2, 0), new Point(2, 1),
new Point(3, 0), new Point(3, 1)
},
};
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = session.ImproveDecomposition(args))
{
// Explicit transfer of export options, since it is not serializable
maskingResult.MaskingOptions.ExportOptions = exportOptions;
using (Aspose.Imaging.RasterImage segmentImage = maskingResult[1].GetImage())
{
segmentImage.Save(dir + "step2.png");
}
}
}
}
Constructors
AutoMaskingArgs()
public AutoMaskingArgs()
Properties
MaxIterationNumber
Maksimum iterasyon sayısını alır veya ayarlar.
public int MaxIterationNumber { get; set; }
Mülkiyet Değer
Examples
Bu örnek, resim maskeleri ve K-means segmentasyon algoritması kullanılarak bir raster görüntüsünü birden fazla görüntüye nasıl ayırt edeceğinizi gösterir. resim maskeleri, arka planı ön görüntü nesnelerinden ayırmak için kullanılan bir görüntü işleme tekniğidir.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
NumberOfObjects
nesnelerin sayısını alır veya ayarlarBaşlangıç görüntüsünü (seçmeli) ayırmak için varsayılan değer 2 (objekt ve arka plan)‘dır.
public int NumberOfObjects { get; set; }
Mülkiyet Değer
Examples
Bu örnek, resim maskeleri ve K-means segmentasyon algoritması kullanılarak bir raster görüntüsünü birden fazla görüntüye nasıl ayırt edeceğinizi gösterir. resim maskeleri, arka planı ön görüntü nesnelerinden ayırmak için kullanılan bir görüntü işleme tekniğidir.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
ObjectsPoints
Ayrı nesnelere ait noktaları alır veya ayarlar (seçmeli)NumberOfObjects, NumberOfObjects’a ait olan ilk görüntü nesneleri koordine eder.Bu parametre segmentasyon yöntemi doğruluğunu artırmak için kullanılır.
public Point[][] ObjectsPoints { get; set; }
Mülkiyet Değer
Point [ ]
Examples
Bu örnek, segmentasyon (klustrasyon) yönteminin doğruluğunu iyileştirmek için görüntü gizleme algoritması için önerileri nasıl belirleyeceğinizi gösterir. görüntü gizleme, arka planı ön görüntü nesnelerinden ayırmak için kullanılan bir görüntü işleme tekniğidir.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
ObjectsRectangles
Ayrı nesnelere ait olan nesneleri alır veya ayarlar (seçmeli).Bu parametre segmentasyon yöntemi doğruluğunu artırmak için kullanılır.
public Rectangle[] ObjectsRectangles { get; set; }
Mülkiyet Değer
Rectangle […]
Examples
Bu örnek, segmentasyon (klustrasyon) yönteminin doğruluğunu iyileştirmek için görüntü gizleme algoritması için önerileri nasıl belirleyeceğinizi gösterir. görüntü gizleme, arka planı ön görüntü nesnelerinden ayırmak için kullanılan bir görüntü işleme tekniğidir.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
OrphanedPoints
Artık herhangi bir nesneye ait olmayan noktaları (seçmeli) alır veya ayarlar.Bu parametre yalnızca yeniden segmentasyon durumunda kullanılır.
public Point[] OrphanedPoints { get; set; }
Mülkiyet Değer
Point […]
Precision
segmentasyon yönteminin doğruluğunu (seçmeli) alır veya ayarlar.
public double Precision { get; set; }
Mülkiyet Değer
Examples
Bu örnek, resim maskeleri ve K-means segmentasyon algoritması kullanılarak bir raster görüntüsünü birden fazla görüntüye nasıl ayırt edeceğinizi gösterir. resim maskeleri, arka planı ön görüntü nesnelerinden ayırmak için kullanılan bir görüntü işleme tekniğidir.
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}