Class MaskingResult
名称: Aspose.Imaging.Masking.Result 收藏: Aspose.Imaging.dll (25.4.0)
基于抽象的类可以提供图像从图像面具系统的结果图像。
public abstract class MaskingResult : DisposableObject, IDisposable, IEnumerable<imaskinglayer>, IEnumerable
Inheritance
object ← DisposableObject ← MaskingResult
Implements
IDisposable
,
IEnumerable
继承人
DisposableObject.Dispose() , DisposableObject.ReleaseManagedResources() , DisposableObject.ReleaseUnmanagedResources() , DisposableObject.VerifyNotDisposed() , DisposableObject.Disposed , object.GetType() , object.MemberwiseClone() , object.ToString() , object.Equals(object?) , object.Equals(object?, object?) , object.ReferenceEquals(object?, object?) , object.GetHashCode()
Examples
这个例子表明如何将拉斯特图像分成多个图像,使用图像面具和K的分区算法,图像面具是一种图像处理技术,用于将背景与前方图像对象分开。
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
使用分区面具加速分区过程
// Masking export options
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// The backgroung color will be transparent.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Transparent;
maskingOptions.ExportOptions = exportOptions;
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "BigImage.jpg"))
{
Aspose.Imaging.Size imageSize = image.Size;
// Reducing image size to speed up the segmentation process
image.ResizeHeightProportionally(600, Aspose.Imaging.ResizeType.HighQualityResample);
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Getting the foreground mask
using (Aspose.Imaging.RasterImage foregroundMask = maskingResult[1].GetMask())
{
// Increase the size of the mask to the size of the original image
foregroundMask.Resize(imageSize.Width, imageSize.Height, Aspose.Imaging.ResizeType.NearestNeighbourResample);
// Applying the mask to the original image to obtain a foreground segment
using (Aspose.Imaging.RasterImage originImage = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "BigImage.jpg"))
{
Aspose.Imaging.Masking.ImageMasking.ApplyMask(originImage, foregroundMask, maskingOptions);
originImage.Save(dir + "BigImage_foreground.png", exportOptions);
}
}
}
}
这个例子表明如何将拉斯特图像分成多个图像,使用图像面具和手动面具,图像面具是一种图像处理技术,用于将背景与前图像对象分开。
string dir = "c:\\temp\\";
// Define a manual mask.
Aspose.Imaging.GraphicsPath manualMask = new Aspose.Imaging.GraphicsPath();
Aspose.Imaging.Figure figure = new Aspose.Imaging.Figure();
figure.AddShape(new Aspose.Imaging.Shapes.EllipseShape(new RectangleF(50, 50, 40, 40)));
figure.AddShape(new Aspose.Imaging.Shapes.RectangleShape(new RectangleF(10, 20, 50, 30)));
manualMask.AddFigure(figure);
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
// Set the manual mask.
Aspose.Imaging.Masking.Options.ManualMaskingArgs args = new Aspose.Imaging.Masking.Options.ManualMaskingArgs();
args.Mask = manualMask;
using (RasterImage image = (RasterImage)Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use manual clustering algorithm.
maskingOptions.Method = Masking.Options.SegmentationMethod.Manual;
// All shapes making up a mask will be combined into one.
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// The area of the source image that masking will be applied to.
maskingOptions.MaskingArea = new Rectangle(50, 50, 120, 120);
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
这个例子表明如何指定图像面具算法的建议,以提高分区(分区)方法的准确性。
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
将隐藏会话存储在一个文件中长时间的会话,以及在另一个环境中重复会话的可能性。
string dir = "c:\\temp\\";
string sessionBackupFile = dir + "session.bak";
// Masking export options
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Starting a session for the first time and saving to a file
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
using (Aspose.Imaging.Masking.IMaskingSession session = masking.CreateSession(maskingOptions))
{
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = session.Decompose())
{
using (Aspose.Imaging.RasterImage segmentImage = maskingResult[1].GetImage())
{
segmentImage.Save(dir + "step1.png");
}
}
session.Save(sessionBackupFile);
}
}
// Resuming a masking session from a file
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
using (Aspose.Imaging.Masking.IMaskingSession session = masking.LoadSession(sessionBackupFile))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[]
{
new Point(0, 0), new Point(0, 1), new Point(1, 0),
new Point(1, 1), new Point(2, 0), new Point(2, 1),
new Point(3, 0), new Point(3, 1)
},
};
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = session.ImproveDecomposition(args))
{
// Explicit transfer of export options, since it is not serializable
maskingResult.MaskingOptions.ExportOptions = exportOptions;
using (Aspose.Imaging.RasterImage segmentImage = maskingResult[1].GetImage())
{
segmentImage.Save(dir + "step2.png");
}
}
}
}
Constructors
MaskingResult(MaskingOptions, RasterImage, 直角)
启动 Aspose.Imaging.Masking.Result.MaskingResult 类的新例子。
protected MaskingResult(MaskingOptions maskingOptions, RasterImage originImage, Rectangle maskingArea)
Parameters
maskingOptions
MaskingOptions
面具选项。
originImage
RasterImage
起源图像。
maskingArea
Rectangle
面具区。
Fields
MaskingArea
面具区
protected readonly Rectangle MaskingArea
领域价值
MaskingOptions
面具选项
public readonly MaskingOptions MaskingOptions
领域价值
OriginImage
起源图像
protected readonly RasterImage OriginImage
领域价值
Properties
Layers
拿到层。
public abstract IMaskingLayer[] Layers { get; }
财产价值
IMaskingLayer ( )
Length
得到长度。
public int Length { get; }
财产价值
Examples
这个例子表明如何将拉斯特图像分成多个图像,使用图像面具和K的分区算法,图像面具是一种图像处理技术,用于将背景与前方图像对象分开。
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Set the number of clusters (separated objects). The default value is 2, the foreground object and the background.
args.NumberOfObjects = 3;
// Set the maximum number of iterations.
args.MaxIterationNumber = 50;
// Set the precision of segmentation method (optional)
args.Precision = 1;
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use K-means clustering.
// K-means clustering allows to split image into several independent clusters (segments).
maskingOptions.Method = Masking.Options.SegmentationMethod.KMeans;
maskingOptions.Decompose = true;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
这个例子表明如何将拉斯特图像分成多个图像,使用图像面具和手动面具,图像面具是一种图像处理技术,用于将背景与前图像对象分开。
string dir = "c:\\temp\\";
// Define a manual mask.
Aspose.Imaging.GraphicsPath manualMask = new Aspose.Imaging.GraphicsPath();
Aspose.Imaging.Figure figure = new Aspose.Imaging.Figure();
figure.AddShape(new Aspose.Imaging.Shapes.EllipseShape(new RectangleF(50, 50, 40, 40)));
figure.AddShape(new Aspose.Imaging.Shapes.RectangleShape(new RectangleF(10, 20, 50, 30)));
manualMask.AddFigure(figure);
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
// Set the manual mask.
Aspose.Imaging.Masking.Options.ManualMaskingArgs args = new Aspose.Imaging.Masking.Options.ManualMaskingArgs();
args.Mask = manualMask;
using (RasterImage image = (RasterImage)Image.Load(dir + "Blue hills.png"))
{
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use manual clustering algorithm.
maskingOptions.Method = Masking.Options.SegmentationMethod.Manual;
// All shapes making up a mask will be combined into one.
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// The area of the source image that masking will be applied to.
maskingOptions.MaskingArea = new Rectangle(50, 50, 120, 120);
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Blue hills.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
这个例子表明如何指定图像面具算法的建议,以提高分区(分区)方法的准确性。
string dir = "c:\\temp\\";
using (Aspose.Imaging.RasterImage image = (Aspose.Imaging.RasterImage)Aspose.Imaging.Image.Load(dir + "Gorilla.bmp"))
{
Aspose.Imaging.Masking.Options.AutoMaskingArgs args = new Aspose.Imaging.Masking.Options.AutoMaskingArgs();
// Suggestion #1.
// Analyze the image visually and set the area of interest. The result of segmentation will include only objects that will be completely located within this area.
args.ObjectsRectangles = new Rectangle[]
{
new Rectangle(86, 6, 270, 364),
};
// Suggestion #2.
// Analyze the image visually and set the points that belong to separated objects.
args.ObjectsPoints = new Point[][]
{
new Point[] { new Point(103, 326) },
new Point[] { new Point(280, 43) },
new Point[] { new Point(319, 86) },
};
// Each cluster (segment) will be stored to a separate PNG file.
Aspose.Imaging.ImageOptions.PngOptions exportOptions = new Aspose.Imaging.ImageOptions.PngOptions();
exportOptions.ColorType = Aspose.Imaging.FileFormats.Png.PngColorType.TruecolorWithAlpha;
exportOptions.Source = new Aspose.Imaging.Sources.StreamSource(new System.IO.MemoryStream());
Aspose.Imaging.Masking.Options.MaskingOptions maskingOptions = new Aspose.Imaging.Masking.Options.MaskingOptions();
// Use GraphCut clustering.
maskingOptions.Method = Masking.Options.SegmentationMethod.GraphCut;
maskingOptions.Decompose = false;
maskingOptions.Args = args;
// The backgroung color will be orange.
maskingOptions.BackgroundReplacementColor = Aspose.Imaging.Color.Orange;
maskingOptions.ExportOptions = exportOptions;
// Create an instance of the ImageMasking class.
Aspose.Imaging.Masking.ImageMasking masking = new Aspose.Imaging.Masking.ImageMasking(image);
// Divide the source image into several clusters (segments).
using (Aspose.Imaging.Masking.Result.MaskingResult maskingResult = masking.Decompose(maskingOptions))
{
// Obtain images from masking result and save them to PNG.
for (int i = 0; i < maskingResult.Length; i++)
{
string outputFileName = string.Format("Gorilla.Segment{0}.png", maskingResult[i].ObjectNumber);
using (Aspose.Imaging.Image resultImage = maskingResult[i].GetImage())
{
resultImage.Save(dir + outputFileName);
}
}
}
}
这个[因特]
在指定的指数中获取 Aspose.Imaging.Masking.Result.IMaskingLayer。
public IMaskingLayer this[int index] { get; }
财产价值
Methods
GetEnumerator()
接到列表。
public IEnumerator<imaskinglayer> GetEnumerator()
Returns
这个列表。